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Capillary instability of an annular liquid jet 
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An analytical investigation of the stability of a viscous, annular liquid jet moving 
in an inviscid medium is presented. This problem is a generalization of the well-known 
cases of a round cylindrical jet (obtained here when the ratio of internal to external 
radii tends to zero) and the flat thin liquid sheet (when the ratio above tends to unity). 
A critical ‘penetration’ thickness T is defined. When the annulus thickness is greater 
than T, the annular jet behaves like a full liquid jet; the only unstable perturbations 
are axisymmetric, and their growth rate is independent of thickness. When the 
annulus thickness is less than T, the jet behaves like a two-dimensional liquid sheet ; 
the most unstable perturbations are antisymmetric and their growth rate increases 
as the jet thickness decreases. Therefore, an annular liquid jet with a sufficiently small 
ring thickness will disintegrate into spherical shells much faster than a full liquid 
jet disintegrates into drops, in accordance with existing experimental data. Non- 
dimensional expressions for the penetration thickness are given for both viscous and 
inviscid jets. 

1. Introduction 
Much work has been done in recent years on the dynamics of annular liquid jets, 

because of various applications of such jets in the formation of spherical shells 
(Kendall1981), acoustic barriers (Walker & East 1984) and spray guns, among others. 

The shape of annular jets, and the related water bells and compound jets, has been 
extensively studied, including the effects of gravity, surface tension, buoyancy and 
pressure (or velocity) differences between the inner and outer gas regions (Binnie & 
Squire 1941 ; Lance & Perry 1953 ; Tuck 1982 ; Gardner & Lloyd 1984; Sanz & 
Meseguer 1985). 

The stability of the annular liquid jet is of interest also from a more general 
theoretical point of view, as it can be regarded as a general case including, as limits, 
two well-known situations: (i) that of the circular liquid jet or a cylindrical cavity 
in a liquid medium and (ii) the thin planar liquid sheet. 

These two limiting cases have been extensively investigated during the last 
century, starting with Rayleigh’s (1894) classical analysis of varicose instability of a 
round jet. The dominant mode of instability leading to breakup was found to be 
axisymmetric disturbances leading to drop formation. Recent nonlinear studies show 
this to be still the case (including satellite droplets, etc.) for larger perturbations 
(Bogy 1979). The effects of velocity (Weber 1931) and viscosity (Sterling & Sleicher 
1975) only modify this behaviour quantitatively. 

The capillary instability of thin liquid sheets was first studied by Squire (1953) and 
Hagerty & Shea (1955). Here, instability and breakup are caused by growth of 
sinuous waves, i.e. including sideways deflections of the centreline. Again various 
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FIGURE 1. Schematic description of an unstable perturbation in an annular jet. 

generalizations such as the inclusion of viscosity (Dombrowski & Johns 1963) or 
spreading (Weihs 1978) did not change the qualitative behaviour. 

The annular jet is thus useful in showing how the different dominant modes of 
instability arise and change in importance as one changes the ratio of inner to outer 
radii of the annulus from the circular jet limit (a/b+O) to the ( a / b +  1) thin flat sheet 
case. 

In the present paper we examine the linear stability of an infinitely long annular 
jet moving relative to the media external and internal to the jet. The stability of jet 
shape to temporal perturbations in the radius is studied, as there is no experimental 
evidence for the existence of the primary modes of spatial instability discussed by 
Keller, Rubinow & Tu (1973). A parametric study of the effects of surface tension, 
viscosity and relative velocity is performed. 

2. Formulation of the stability problem 
Consider an infinitely long liquid jet of annular cross-section with internal radius 

a, external radius 6 ,  and constant density p, viscosity ,u and surface tension u (see 
figure 1). The jet is moving at fixed axial velocity U through an inviscid medium of 
constant density p^(p^ 4 p ) .  

The linear stability of this jet, when subjected to infinitesimal perturbations, will 
now be studied. Defining (figure 1) a cylindrical coordinate system (r, 8, z )  in which 
the z-axis coincides with the jet axis and moves with it at  speed U ,  one can write 
the perturbed form of the cylinder, assuming only axisymmetric perturbations, as 

r b ( z , t )  = b + q b ( z , t ) ;  r a ( z , t )  = a + q a ( Z , t ) ,  (1) 

~ 5 ( z ,  t )  = Re ( ~ 0 5  exp (/35 t +ik5 2)) ( j  = a, b) ,  (2) 

where /?, are the complex frequencies and k5 the wavenumbers of the perturbations. 
Conservation of mass over a finite but arbitrary length of the jet much larger than 
the wavelength leads to the relations (Meyer 1983) 

where va, ?jb + a, b ,  respectively. The perturbations take the form 

when a / b  is of order 1. This does not include the limiting case of a full cylinder (a+O) 
or a hollow jet (a finite, b+oo) ,  but these cases do not require the compatibility 
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conditions (3) as only one characteristic equation is solved. Figures 3, 4, 5, 7 and 8 
show that results tending to those for a full jet are obtained when a/b 2 0.6, so that 
the restriction of a/b = O( 1) does not cause any practical (or numerical) difficulties. 

The equations of motion for the jet and surroundings are obtained by assuming 
all fluids to be isothermal and incompressible, and neglecting body forces and the 
viscosity of the surrounding low-density media. The coefficients of surface tension 
and viscosity of the jet fluid are assumed constant. The axial velocity and pressure 
are assumed to be independent of the radial coordinate. Perturbing the jet boundaries 
induces changes in the pressure and velocities both of the jet and its surroundings. 
One can write the equations of motion for the perturbed quantitiesii,p in the annulus, 
and ii , ,p, and iib,pb for the media internal to, and outside of the jet, respectively, 
retaining only first-order terms in the perturbations, as 

V * i i = O ;  V . i i j = O  ( j = a , b ) ,  (4) 

aii 1 

at P P 
- = --Vp+-V%i, (jet) 

&b &b - 1 
at P 
-+ U- - -7Vpb (external medium), 

aii, 1 

at P 
-+ U s  = - y V p ,  (internal medium), 

since both the fluid external to, and inside the jet are non-moving (i.e. moving at  
speed U relative to the jet). The boundary conditions for these equations are taken 
to hold at  the unperturbed radii a and b, again as a result of the small-disturbance 
model (Squire 1953). These are 

no fluid flux through the boundaries 

u = -  a” ( j = a, b )  at T = a, b respectively (6) r at 
for the jet material, and 

3% 3% 
at a2 

urj = -+ U- at r = a, b respectively (7) 

for the surrounding media. 

(1975) : 
The shear stress in the jet vanishes on the boundaries following Sterling & Sleicher 

(8) -+--0 auz aur - a t r = a ,  r = b ,  
ar a2 

The normal stress is continuous over the interfaces. The pressure jump due to 
capillary forces at  the interfaces is (on r = b for example) (Levich 1962) 

The pressure at the interfaces is, applying (2 ) ,  

u 
(10a) 

( l o b )  

- p i - @ -  aur - - -pb+g(1 -k2b2)qb  a t  r = b 
aT 

and - p + 2 p ~ = - p , - , ( l - k 2 b 2 ) ~ ,  c7 a t r = a  
aT a 
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The equations of motion ( 5 )  are now expressed by means of potential functions in 
the inviscid media surrounding the jet, and the velocity in the viscous jet is taken 
to be the sum of a potential part that fulfils Laplace's equation, and a viscous part 
described by a stream function (Levich 1962; Sterling & Sleicher 1975). These 
functions are now assumed, as a result of the form of the perturbations (2 ) ,  to take 
the general form 

F(r , z , t )  =f(r)  exp(Bt+ikz), (11) 

where F will be each of the three potential functions, and the stream function. The 
functions f ( r )  for the potential and stream functions in the jet and the two 
surrounding media are of the modified-Bessel-function form, with argument kr for 
the potentials, and (k2+Bp/p)t for the stream function. 

After some rather tedious algebraical manipulations,t which follow closely the 
analysis of Sterling & Sleicher (1975), we obtain the pressure conditions (lOa, b) in 
non-dimensional form, as characteristic equations relating w - the non-dimensional 
temporal growth rate ((do = @b/U and wa = pa/U) of a disturbance - to the normal- 
ized wavenumbers yb  = kb and ya  = ka = ( a l b )  yb : 

where D = p^/p, Rb = pub/", wb = pWb/a, KO, K, ,  I,, I ,  are modified Bessel 
functions, 

and 

with Reynolds and Weber numbers Ra = pUa/p and Wa = p V a / u ,  respectively, 

and Ql(Ylb9 7'1,) = e(Y1a7 Ylb )  

in similar fashion. 
Equations (12) and (14) are thus the characteristic equations to  be solved with 

instability occurring when w j  > 0 for a given y j .  The compatibility conditions (3) 

t Details of which are available, upon request, from the authors. 



Capillary instability of an annular liquid jet 535 

allow for only one of these to be solved for annular cases where a/b = O(1). These 
equations are of the form 

and thus, for D, a/b,  Rj,  W, known, w5 is only a function of 7,. The terms including 
P,, Q1 introduce an implicit dependence on w ,  so that (12) and (14) are not simple 
quadratic dependences, for viscous jets. For inviscid jets, R, = Rb+m and these 
terms vanish. 

The solutions of (12) and (14) enable the determination of unstable perturbations, 
and specifically, finding the wavenumber y* that has the maximum growth rate ( w * )  
in the linear regime. This is usually (Sanz & Meseguer 1985) taken to be the 
wavenumber of the disturbance that finally causes breakup of the jet. We do not 
expect the twin maxima observed for compound jets with differing surface-tension 
coefficients at the inner and outer radius. We essentially have a case of equal 
surface-tension coefficients but negligible inner jet density for which (Sanz & 
Meseguer 1985) only one maximum is obtained. 

3. Analytical solutions 
Equations (12) and (14) are the general characteristic equations for studying the 

stability of the annular jet. No general analytical solution is possible owing to the 
appearance of the growth rate in the viscous term (in y ) .  However, the neutral 
stability limit can be approximately obtained analytically in closed form, and can 
serve as a partial check on the equations. Also, the limits of the full jet and thin flat 
sheet will be retrieved. In the latter two examples, the requirement of a/b = 0(1) is 
not fulfilled, but on the other hand only one characteristic equation is required, so this 
restriction is not relevant. 

3.1. Wavenumber for neutral stability 
The external characteristic equation is of the form 

G, 0; + 2Wb(iG,  + G,) = G, (17)  

and the difficulty precluding a closed-form solution appears in the coefficient G,. The 
wavenumber of neutral stability has (by definition) w = 0, so that for this 
wavenumber 

G, = 0, (18) 

i.e. (18) can serve as the relation between the various parameters resulting in neutral 
stability. From (12) 

with a similar equation for the inner boundary, as a function of ya.  Ko(z) /K,(z)  < 1 
for all finite values of z, and D is O(lO-,) for a typical liquid in air, so that for 
Wb x O( 1)  the wavenumber of neutral stability obtained from the external equation 
(YO)b is 

(YO)b 1,  (20) 

and when wb = 0 as in Rayleigh’s (1894) case of no external fluid, (Y& = 1 ,  as 
originally obtained by Rayleigh. 
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500 t / 

FIGURE 2. Dependence of the wavenumber of neutral stability on Weber number. 

Another limit enabling an approximate analytical solution is that of very fast 
relative motion (still within the incompressible regime), i.e. W, 9 1.  For example, a 
water jet of 1 cm external radius moving at 50 m/s in air at 20 "C has W, x 3.5 x lo5. 
Equation (19) then leads, using the expressions for large arguments of the Bessel 
functions, to  

(Yo),  x w,o (j = a , b )  (21) 

or, in dimensional quantities, 

i.e. for large enough values of the Weber number the wavenumber of neutral temporal 
stability k, obtained from either (12) or (14) is identical with that obtained first by 
Weber (1931) for the round full jet, and by Squire (1953) for the flat thin liquid sheet. 
Figure 2 shows the variation of (yo), with W, D, from which one can see that 

or k, = Or?) 

for most cases of practical interest, when DW 2 1. 

3.2. A full liquid j e t  (u+ 0) 
The most complete analytical investigation of a viscous liquid jet in a gas medium 
appears in Sterling & Sleicher (1975). The present external characteristic equation 
(12) differs from their equation by including expressions P and Pl instead of their 
10(yb)/ll(yb) and I,(Y~~)/I~(Y~~) respectively. The internal equation (14) is obviously 
not relevant here. 
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When a+O, for D Wb >> 1, which results in Y b  % 1 ,  and using asymptotic expressions 
for Bessel functions, we obtain 

i.e. the external characteristic equation tends to the equation for a full liquid jet, 
retrieving existing solutions. 

3.3. A gas jet  mcrving in a liquid medium (b  + 00)  

This case was first analysed by Rayleigh (1894) and more recently by Chandrasekhar 
(1961), limited to  quiescent inviscid cylinders in a vacuum. Here the external 
equation (12) is not relevant. 

When b + m ,  and by use of asymptotic relations, expressions Q and Q1 in the 
internal characteristic equation (14) become 

No comparison being available for the general case, we take the Rayleigh case 
p̂  = p = U = 0, and (14) with (25) reduces to 

which is identical with the equation given by Chandrasekhar (1961). Solution of this 
equation for the dominant wavelength A* is 

A* = 12.98~ 
as given by Rayleigh (1894). 

3.4. A thin liquid sheet (a/b+ 1 )  

A third limiting case for the annular liquid jet is obtained when the ratio of radii tends 
to unity (a/b+ 1).  This case represents a thin liquid sheet as curvature effects vanish. 
Stability of sheets was first analysed by Squire (1953) for an inviscid liquid, followed 
by Dombrowski & Johns (1963), who included viscous effects. 

Assuming that OW, % 1,  D W, % 1,  one can write P (equation (13a)) approximately 
by using asymptotic expressions for the Bessel functions. Now, we assume 
(yb- yu) < 1, which is equivalent to (b-a) < b,  thus obtaining a thin liquid jet. The 
expression for P reduces to 

P i(Yb-Ya)- (28) 

Now, defining the jet thickness as 2h = b - a and its corresponding non-dimensional 
values by 

the external characteristic equation (12) reduces to 
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Let us first analyse the inviscid case (Rh % 1 )  to compare this equation with Squire's 
(1953) analysis. Also, we again take D < 1. The characteristic equation is then 

For an unstable jet, W A R  > 0, and so the limiting wavenumber is still 

The maximum growth rate wzR is obtained for 

and its value is 

These three quantities are identical with those obtained by Squire (1953). 
The characteristic equation (30) holds also in the viscous case, under the conditions 

yb  9 1,2yh < 1, because in that case Rb2 is small compared with the right-hand side 
of (29). (One has O(lO-s-lO-lo) compared with O(lO-").) This result is in agreement 
with a study by Dombrowski & Johns (1963) for a viscous liquid sheet, which shows 
that in our case the results for the viscous fluid reduce to the inviscid solution. 

Finally, the internal characteristic equation (14), under the same conditions and 
by taking similar limits reduces to (30), just like the external equation. 

The condition ( yb  - ya)  = 27,  < 1 implies the existence of a 'penetration thickness ' 
T,, defined by 

Dwh=O.5  O r T =  ( p^- 3-l , (35) 

since the wavenumber of neutral stability is Yho = OWh = @iYh/u. Thus an annular 
liquid jet whose ring thickness is less than T, behaves like a thin inviscid liquid sheet, 
as will be discussed later. 

4. Results and discussion 
4.1. Maximum growth rate w i  and dominant wavenumber y* 

The full characteristic equations are now solved numerically and results, especially 
that of the maximum growth rate w g  and dominant wavenumber y*,  are presented 
here, and shown in figures 3-8. 

These dominant values are presented in a normalized form : 

(36) 

(37) 
*,* L* 
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FIQURE 3. Dependence of non-dimensional disturbance growth rate V, on wavenumber 7, for 
various ratios of diameters. The broken line shows the full-jet case. 

This form of non-dimensionalization was found to be useful (Meyer 1983) in that the 
quantities G* and 7% are dependent only on a single material parameter, the ratio 
of capillary to viscosity forces: 

Ow,- aUp 
Nb = R, - p-* P= 

As found in the full-liquid-jet case, viscous effects are small for Nb < so results 
will be shown for one inviscid (Nb < 1W2) and one viscous liquid (Nb > lo-'). 

The first case presented is an annular water jet (p = 0.01 P;  (r = 70 dyne/cm) of 
radius b = 1 cm, moving at  the velocity U = lo00 cm/s in air (B/p = 1/800). 
Corresponding non-dimensional ratios are Weber number OW, = 17.9, Reynolds 
number R, = lo5 and their ratio Nb = 1.8 x 

Figure 3 shows the variation of GR with the wavenumber 7 for different ratios a/b.  
Figures 4 and 5 show the dependence of 7* and G; on the ratio a /b  (or the thickness 
2h/b) .  Also shown are results for the same water jet but with radius b = 100 cm, 
showing the effects of changing radius (and W b ) ,  and at the velocity U = 10000 cm/s, 
showing effects of velocity. In  both cases, at the limit a/b + O ,  r* and GR correspond 
to the values of the liquid jet (Meyer 1983), for here ow, % 1. 

Values of r* and Gg do not change significantly as a /b  increases to near the 

18 FLY 179 
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FIQURE 5. Maximum growth rate sjg versus ratio alb, for various annular water jets. 
For notation see figure 4. 

FIGURE 4. The non-dimensional wavenumber of maximum instability T* (dominant wavenumber) 
versus the ratio alb, for annular water jets. The broken lines indicate the capillary penetration 
thickness in each case. 
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FIQURE 6. Dependence of disturbance growth rate tiR on wavenumber 7, for annular viscous liquid 
jets of various ratios of diameters Owb = 4167; Rb = 1OOOo; Nb = 0.42. 

penetration thickness T, (defined by (35) and specified in the figures), where there 
is a sharp change in their values : r* decreases to the value of the liquid sheet (0.50) 
given by Squire (1953) and (33), while G$ increases with thickness decrease (as from 
(34)). Within the limits of the penetration thickness, values of G$ are in good 
agreement with values obtained by Dombrowski & Johns (1963). 

The criterion for the penetration thickness corresponds to a sharp change in 
characteristic behaviour of the annular jet from a jet-like instability to a sheet-like 
instability. In particular, below the penetration thickness the growth rate G$ 
increases considerably, up to an order of magnitude or more, faster than the growth 
rate of the full jet, and consequently breakup time and length decrease considerably. 

The other cases presented in figures 4 and 5 confirm the previous arguments about 
a penetration thickness that depends only on W, (or wb), and corresponds to a change 
in the behaviour of the annular jet. In  particular, this thickness T, is independent 
of the radius b. On the other hand, the Characteristic values y* and G$ for small a/b 
ratio, and at the limit a/b+O, depend on the ratio N,, as shown by Meyer (1983). 

Next, we examine an annular viscous liquid jet (p = 1 P; u = 30 dyne/cm), with 
a radius b = 1 cm, and at the velocity U = 10000 cm/s. Corresponding non- 
dimensional ratios are OWb = 4167, R, = lo4 and N ,  = 0.42. 

18-2 
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alb 

FIQURE 7. Dominant wavenumber y* versus ratio a/b,  for annular viscous liquid jets with p = 1 P, 
u = 30 dyne/cm. ----, capillary penetration thickness; -.-, viscous penetration thickness. 

U b 
(cm/s) (4 wb Rb Nb 

( a )  1000 1 41.7 103 0.042 
lo00 100 41 67 .O 106 0.042 

(4 loo00 1 4167.0 104 0.42 
(b)  

Figure 6 shows the variation of W, with the wavenumber 7 for different ratios a/b. 
In comparison with the inviscid case (figure 3), it  is shown that the curve of G ,  has 
its maximum at a lower value of 7, and that it remains constant up to higher values 
of the ratio a/b .  Figures 7 and 8 show dependence of r* and Gg on the ratio a/b. 
Results are also shown for the same liquid jet with radius b = 100 cm ( D  W, = 4167) 
and b = 1 cm (DWb = 41.7) and axial velocity U = 1000 cm/s, to highlight the effect 
of the non-dimensional parameters Nb and W,. 

Some trends that have appeared in the inviscid cases are still valid for these highly 
viscous jets: at the limit a/b+O, 7* and Wi correspond to the values of the full liquid 
jet. Again a penetration thickness T, exists such that a jet with ring thickness smaller 
than it behaves like a liquid sheet, retrieving the Squire (1953) and Dombrowski & 
Johns (1963) results: p* is 0.50, and W i  increases as the annulus becomes thinner. 
Under this condition viscosity does not change the results for both liquid sheets and 
annular jets, as previously shown analytically. 

But thicker viscous annular jets behave differently. First, for small a/b ratios, r* 
is smaller than 0.50 (Meyer 1983), and so it has to increase in order to match the value 
of the liquid sheet. Secondly, before r* increases towards 0.50, at T,, it first decreases 
at some characteristic thickness. This thickness may be called a viscous penetration 
thickness T,, in contrast to T,, which will be called the capillary penetration 
thickness. When 2h < T, the annular viscous jet behaves like a viscous liquid sheet, 
such as studied by Dombrowski & Johns (1963), and specifically r* < 0.5. At 
2h < T, < Tv the viscous liquid sheet itself behaves as the inviscid one, and so does 
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the viscous circular jet. The growth rate Zg, in the viscous case, already begins to 
increase at the viscous thickness T,. This thickness was not obtained analytically, 
but on the basis of the numerical results. The viscous penetration thickness can be 
correlated to the Reynolds number Rh: 

(Rh), = 50 OX' T, = IOO - (39) 0-' 
The different cases shown in figures 7 and 8 confirm the above: 

for small a/b ratios, the dominant values r* and 75; depend on Nb ; 
capillary thickness T, depends on w h  ( Wb) ; 
viscous thickness T, depends on Rh (or Rb). 

4.2. Penetration thicknesses 
A capillary penetration thickness T, for annular liquid jets was defined in (35). If the 
annular jet is thicker than T, it behaves like a full liquid jet with constant 752. 
Otherwise, it behaves like a liquid sheet, where the wavenumber of maximal 
instability 752 grows as the thickness decreases. 

For viscous annular liquid jets, there exists also a viscous penetration thickness 
T, defined by (39). If the annular jet is thinner than T, it behaves like a viscous liquid 
sheet. If the annular jet is thinner than T, it behaves again like an inviscid liquid 
sheet. In both cases, Gig grows as the thickness decreases. 

This process exists naturally only if T, > T,; otherwise no effect of viscosity is 
noted. So, viscous effects are significant when 

or 

100h h ->- 
Rh OWh 

- 3 = Nb > 10-2, 
Rh Rb 

This criterion for the significance of effects is the same as the criterion found in the 
full liquid jet (Meyer 1983), based on an analysis of the order of magnitude of 
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expressions in the characteristic equation. Also, in the full liquid jet, the value of 
Nb = corresponds to a dominant wavenumber y* = 0.50, separating inviscid jets 
(y* > 0.50) from viscous jets (r* < 0.50). 

These thicknesses T, and T, were called penetration thicknesses, according to the 
following model of the capillary instability of an annular jet : 

For low ratios of radii a / b ,  or large thickness ratios 2h/b, the jet is thick enough 
that there is no relation between perturbations on the external and the internal 
radii. The annular jet behaves like a full liquid jet (if a+O and b is finite) or like 
a hollow jet (if a is finite and b - + o o ) .  Unstable perturbations are axisymmetric, 
and growth rate /?; is independent of thickness. 
For viscous annular jets, and jet thickness smaller than T,, perturbations on the 
external radius penetrate down into the internal radius and vice versa, owing to 
the diffusion of vorticity by viscosity acting to correlate the flow conditions and 
perturbations in the liquid. 
For both viscous and inviscid annular jets thinner than T,, again perturbations on 
the external and internal radii penetrate one into the other, but now owing to the 
capillary influence acting in a similar manner to the viscosity. For viscous jets the 
influence of viscosity becomes negligible relative to the capillary or thickness effect. 
For jets with Nb < the capillary effect is stronger than the viscous one for all 
values of the ratio a / b .  In those two ranges 2h < T, and 2h c T,, perturbations 
are common to both the internal and external radii. The jet thickness is small 
enough that the annular jet may be viewed locally as a thin liquid sheet, for which 
the principal mode of instability is antisymmetric (sinuous). As a result the rate 
of growth of disturbances is much larger than for thick jets. 

This also explains why the condition D Wb 1 is required so that the annular jet with 
a+O should behave as a full cylindrical jet. For, if D W ,  x 1 ,  Tc/b = 1 / D  Wb x 1, and 
the penetration thickness is of the same order as the jet radius itself. So, even at the 
limit a+O, the annular jet will behave as a liquid sheet, and not as a circular jet. 

In contrast, for the case b+ 00, even for small OW,, a jet thickness 2h = b --a larger 
than T, will always be reached, and so at the limit b+O the annular jet will behave 
as a hollow jet. 

This study was supported by the Technion V.P.R.-L. Kraus Research Fund. 
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